Langchain

This guide helps you build a question-answering application based on a local knowledge base using Qwen1.5-7B-Chat with langchain. The goal is to establish a knowledge base Q&A solution.

Basic Usage

The implementation process of this project includes loading files -> reading text -> segmenting text -> vectorizing text -> vectorizing questions -> matching the top k most similar text vectors with the question vectors -> incorporating the matched text as context along with the question into the prompt -> submitting to the Qwen1.5-7B-Chat to generate an answer. Below is an example:

pip install langchain==0.0.174
pip install faiss-gpu
from transformers import AutoModelForCausalLM, AutoTokenizer
from abc import ABC
from langchain.llms.base import LLM
from typing import Any, List, Mapping, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen1.5-7B-Chat",
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-7B-Chat")

class Qwen(LLM, ABC):
     max_token: int = 10000
     temperature: float = 0.01
     top_p = 0.9
     history_len: int = 3

     def __init__(self):
         super().__init__()

     @property
     def _llm_type(self) -> str:
         return "Qwen"

     @property
     def _history_len(self) -> int:
         return self.history_len

     def set_history_len(self, history_len: int = 10) -> None:
         self.history_len = history_len

     def _call(
         self,
         prompt: str,
         stop: Optional[List[str]] = None,
         run_manager: Optional[CallbackManagerForLLMRun] = None,
     ) -> str:
         messages = [
             {"role": "system", "content": "You are a helpful assistant."},
             {"role": "user", "content": prompt}
         ]
         text = tokenizer.apply_chat_template(
             messages,
             tokenize=False,
             add_generation_prompt=True
         )
         model_inputs = tokenizer([text], return_tensors="pt").to(device)
         generated_ids = model.generate(
             model_inputs.input_ids,
             max_new_tokens=512
         )
         generated_ids = [
             output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
         ]

         response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
         return response

     @property
     def _identifying_params(self) -> Mapping[str, Any]:
         """Get the identifying parameters."""
         return {"max_token": self.max_token,
                 "temperature": self.temperature,
                 "top_p": self.top_p,
                 "history_len": self.history_len}

After loading the Qwen1.5-7B-Chat model, you should specify the txt file for retrieval.

import os
import re
import torch
import argparse
from langchain.vectorstores import FAISS
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from typing import List, Tuple
import numpy as np
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.docstore.document import Document
from langchain.prompts.prompt import PromptTemplate
from langchain.chains import RetrievalQA

class ChineseTextSplitter(CharacterTextSplitter):
    def __init__(self, pdf: bool = False, **kwargs):
        super().__init__(**kwargs)
        self.pdf = pdf

    def split_text(self, text: str) -> List[str]:
        if self.pdf:
            text = re.sub(r"\n{3,}", "\n", text)
            text = re.sub('\s', ' ', text)
            text = text.replace("\n\n", "")
        sent_sep_pattern = re.compile(
            '([﹒﹔﹖﹗.。!?]["’”」』]{0,2}|(?=["‘“「『]{1,2}|$))')
        sent_list = []
        for ele in sent_sep_pattern.split(text):
            if sent_sep_pattern.match(ele) and sent_list:
                sent_list[-1] += ele
            elif ele:
                sent_list.append(ele)
        return sent_list


def load_file(filepath):
    loader = TextLoader(filepath, autodetect_encoding=True)
    textsplitter = ChineseTextSplitter(pdf=False)
    docs = loader.load_and_split(textsplitter)
    write_check_file(filepath, docs)
    return docs


def write_check_file(filepath, docs):
    folder_path = os.path.join(os.path.dirname(filepath), "tmp_files")
    if not os.path.exists(folder_path):
        os.makedirs(folder_path)
    fp = os.path.join(folder_path, 'load_file.txt')
    with open(fp, 'a+', encoding='utf-8') as fout:
        fout.write("filepath=%s,len=%s" % (filepath, len(docs)))
        fout.write('\n')
        for i in docs:
            fout.write(str(i))
            fout.write('\n')
        fout.close()


def separate_list(ls: List[int]) -> List[List[int]]:
    lists = []
    ls1 = [ls[0]]
    for i in range(1, len(ls)):
        if ls[i - 1] + 1 == ls[i]:
            ls1.append(ls[i])
        else:
            lists.append(ls1)
            ls1 = [ls[i]]
    lists.append(ls1)
    return lists


class FAISSWrapper(FAISS):
    chunk_size = 250
    chunk_conent = True
    score_threshold = 0

    def similarity_search_with_score_by_vector(
            self, embedding: List[float], k: int = 4
    ) -> List[Tuple[Document, float]]:
        scores, indices = self.index.search(np.array([embedding], dtype=np.float32), k)
        docs = []
        id_set = set()
        store_len = len(self.index_to_docstore_id)
        for j, i in enumerate(indices[0]):
            if i == -1 or 0 < self.score_threshold < scores[0][j]:
                # This happens when not enough docs are returned.
                continue
            _id = self.index_to_docstore_id[i]
            doc = self.docstore.search(_id)
            if not self.chunk_conent:
                if not isinstance(doc, Document):
                    raise ValueError(f"Could not find document for id {_id}, got {doc}")
                doc.metadata["score"] = int(scores[0][j])
                docs.append(doc)
                continue
            id_set.add(i)
            docs_len = len(doc.page_content)
            for k in range(1, max(i, store_len - i)):
                break_flag = False
                for l in [i + k, i - k]:
                    if 0 <= l < len(self.index_to_docstore_id):
                        _id0 = self.index_to_docstore_id[l]
                        doc0 = self.docstore.search(_id0)
                        if docs_len + len(doc0.page_content) > self.chunk_size:
                            break_flag = True
                            break
                        elif doc0.metadata["source"] == doc.metadata["source"]:
                            docs_len += len(doc0.page_content)
                            id_set.add(l)
                if break_flag:
                    break
        if not self.chunk_conent:
            return docs
        if len(id_set) == 0 and self.score_threshold > 0:
            return []
        id_list = sorted(list(id_set))
        id_lists = separate_list(id_list)
        for id_seq in id_lists:
            for id in id_seq:
                if id == id_seq[0]:
                    _id = self.index_to_docstore_id[id]
                    doc = self.docstore.search(_id)
                else:
                    _id0 = self.index_to_docstore_id[id]
                    doc0 = self.docstore.search(_id0)
                    doc.page_content += " " + doc0.page_content
            if not isinstance(doc, Document):
                raise ValueError(f"Could not find document for id {_id}, got {doc}")
            doc_score = min([scores[0][id] for id in [indices[0].tolist().index(i) for i in id_seq if i in indices[0]]])
            doc.metadata["score"] = int(doc_score)
            docs.append((doc, doc_score))
        return docs


if __name__ == '__main__':
    # load docs (pdf file or txt file)
    filepath = 'your file path'
    # Embedding model name
    EMBEDDING_MODEL = 'text2vec'
    PROMPT_TEMPLATE = """Known information:
    {context_str}
    Based on the above known information, respond to the user's question concisely and professionally. If an answer cannot be derived from it, say 'The question cannot be answered with the given information' or 'Not enough relevant information has been provided,' and do not include fabricated details in the answer. Please respond in English. The question is {question}"""
    # Embedding running device
    EMBEDDING_DEVICE = "cuda"
    # return top-k text chunk from vector store
    VECTOR_SEARCH_TOP_K = 3
    CHAIN_TYPE = 'stuff'
    embedding_model_dict = {
        "text2vec": "your text2vec model path",
    }
    llm = Qwen()
    embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[EMBEDDING_MODEL],model_kwargs={'device': EMBEDDING_DEVICE})

    docs = load_file(filepath)

    docsearch = FAISSWrapper.from_documents(docs, embeddings)

    prompt = PromptTemplate(
        template=PROMPT_TEMPLATE, input_variables=["context_str", "question"]
    )

    chain_type_kwargs = {"prompt": prompt, "document_variable_name": "context_str"}
    qa = RetrievalQA.from_chain_type(
        llm=llm,
        chain_type=CHAIN_TYPE,
        retriever=docsearch.as_retriever(search_kwargs={"k": VECTOR_SEARCH_TOP_K}),
        chain_type_kwargs=chain_type_kwargs)

    query = "Give me a short introduction to large language model."
    print(qa.run(query))

Next Step

Now you can chat with Qwen1.5 use your own document. Continue to read the documentation and try to figure out more advanced usages of model retrieval!